HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
3D Anomaly Detection And Segmentation
3D Anomaly Detection And Segmentation On
3D Anomaly Detection And Segmentation On
評価指標
Detection AUROC
Segmentation AUPRO
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Detection AUROC
Segmentation AUPRO
Paper Title
Repository
Voxel GAN
0.537
0.583
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
Voxel VM
0.571
0.492
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection (FPFH)
0.782
0.924
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection
Shape-Guided (only SDF)
0.916
0.931
Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection
CPMF (2D)
0.8918
0.9145
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
Voxel AE
0.699
0.348
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
3D-ST_128
-
0.833
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
-
CPMF (2D+3D)
0.9515
0.9293
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
CPMF (3D)
0.8304
0.9230
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
0 of 9 row(s) selected.
Previous
Next