HyperAI

Node Classification On Non Homophilic 9

Métriques

1:1 Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèle1:1 Accuracy
non-local-graph-neural-networks85.4 ± 3.8
joint-adaptive-feature-smoothing-and-topology81.35 ± 5.32
geom-gcn-geometric-graph-convolutional-166.76 ± 2.72
breaking-the-limit-of-graph-neural-networks83.62 ± 5.50 
revisiting-heterophily-for-graph-neural88.38 ± 3.43
revisiting-heterophily-for-graph-neural81.89 ± 4.53
beyond-low-frequency-information-in-graph84.86 ± 7.23
large-scale-learning-on-non-homophilous74.60 ± 8.37 
neural-sheaf-diffusion-a-topological82.97 ± 5.13 
two-sides-of-the-same-coin-heterophily-and84.86 ± 4.55
simple-and-deep-graph-convolutional-networks-177.57 ± 3.83
neural-sheaf-diffusion-a-topological85.95 ± 5.51
mixhop-higher-order-graph-convolution77.84 ± 7.73 
finding-global-homophily-in-graph-neural84.05 ± 4.90
revisiting-heterophily-for-graph-neural88.38 ± 3.64
neural-sheaf-diffusion-a-topological85.67 ± 6.95
revisiting-heterophily-for-graph-neural88.11 ± 3.24
revisiting-heterophily-for-graph-neural87.84 ± 4.4
revisiting-heterophily-for-graph-neural81.89 ± 4.53
addressing-heterophily-in-node-classification84.31 ± 4.44
non-local-graph-neural-networks62.6 ± 7.1
revisiting-heterophily-for-graph-neural88.38 ± 3.43
revisiting-heterophily-for-graph-neural86.76 ± 4.75
finding-global-homophily-in-graph-neural84.32 ± 4.15 
non-local-graph-neural-networks65.5 ± 6.6
beyond-low-frequency-information-in-graph76.49 ± 2.87