HyperAI

Node Classification On Non Homophilic 7

Métriques

1:1 Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèle1:1 Accuracy
revisiting-heterophily-for-graph-neural85.68 ± 4.84
mixhop-higher-order-graph-convolution73.51 ± 6.34 
non-local-graph-neural-networks84.9 ± 5.7
revisiting-heterophily-for-graph-neural82.43 ± 5.44
non-local-graph-neural-networks57.6 ± 5.5
deformable-graph-convolutional-networks85.95±4.37
large-scale-learning-on-non-homophilous 77.84 ± 5.81 
revisiting-heterophily-for-graph-neural86.49 ± 6.73
breaking-the-limit-of-graph-neural-networks81.62 ±3.90 
beyond-low-frequency-information-in-graph76.76 ± 5.87
non-local-graph-neural-networks54.7 ± 7.6
generalizing-graph-neural-networks-beyond82.70 ± 5.28
simple-and-deep-graph-convolutional-networks-177.86 ± 3.79 
geom-gcn-geometric-graph-convolutional-160.54 ± 3.67
neural-sheaf-diffusion-a-topological85.68 ± 6.51
revisiting-heterophily-for-graph-neural82.43 ± 5.44
revisiting-heterophily-for-graph-neural85.95 ± 5.64
two-sides-of-the-same-coin-heterophily-and85.68 ± 6.63 
finding-global-homophily-in-graph-neural85.95 ± 5.10 
revisiting-heterophily-for-graph-neural85.41 ± 5.3
revisiting-heterophily-for-graph-neural85.14 ± 6.07
revisiting-heterophily-for-graph-neural85.68 ± 5.8
neural-sheaf-diffusion-a-topological84.86 ± 4.71
neural-sheaf-diffusion-a-topological86.49 ± 7.35
addressing-heterophily-in-node-classification81.14 ± 6.00
finding-global-homophily-in-graph-neural83.51 ± 4.26
joint-adaptive-feature-smoothing-and-topology78.11 ± 6.55