HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 10
Node Classification On Non Homophilic 10
Métriques
1:1 Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
1:1 Accuracy
Paper Title
Repository
NLGAT
29.5 ± 1.3
Non-Local Graph Neural Networks
ACM-SGC-1
35.49 ± 1.06
Revisiting Heterophily For Graph Neural Networks
MixHop
32.22 ± 2.34
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
ACM-GCN++
37.31 ± 1.09
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
36.63 ± 0.84
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
36.31 ± 1.2
Revisiting Heterophily For Graph Neural Networks
NLMLP
37.9 ± 1.3
Non-Local Graph Neural Networks
H2GCN
35.70 ± 1.00
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Diag-NSD
37.79 ± 1.01
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
37.54 ± 1.56
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
Geom-GCN
31.59 ± 1.15
Geom-GCN: Geometric Graph Convolutional Networks
ACMII-GCN+
36.14 ± 1.44
Revisiting Heterophily For Graph Neural Networks
GPRGCN
35.16 ± 0.9
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
GloGNN
37.35 ± 1.30
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Gen-NSD
37.80 ± 1.22
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Deformable GCN
37.07±0.79
Deformable Graph Convolutional Networks
GCNII
37.44 ± 1.30
Simple and Deep Graph Convolutional Networks
GloGNN++
37.70 ± 1.40
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
LINKX
36.10 ± 1.55
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACM-GCN+
36.26 ± 1.34
Revisiting Heterophily For Graph Neural Networks
0 of 26 row(s) selected.
Previous
Next