HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Wisconsin 60 20 20
Node Classification On Wisconsin 60 20 20
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
ACM-GCN++
97.5 ± 1.25
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
97.13 ± 1.68
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
97.00 ± 2.63
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
96.75 ± 1.79
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
96.63 ± 2.24
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
96.62 ± 1.86
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
96.62 ± 2.44
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
96.5 ± 2.08
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
96.38 ± 2.59
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
95.75 ± 2.03
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
94.63 ± 2.96
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
94.37 ± 2.81
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
94.00 ± 2.61
Revisiting Heterophily For Graph Neural Networks
MLP-2
93.87 ± 3.33
Revisiting Heterophily For Graph Neural Networks
GPRGNN
93.75 ± 2.37
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-1
93.25 ± 2.92
Revisiting Heterophily For Graph Neural Networks
APPNP
92.00 ± 3.59
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
FAGCN
89.75 ± 6.37
Beyond Low-frequency Information in Graph Convolutional Networks
GCNII*
89.12 ± 3.06
Simple and Deep Graph Convolutional Networks
H2GCN
87.5 ± 1.77
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
0 of 35 row(s) selected.
Previous
Next
Node Classification On Wisconsin 60 20 20 | SOTA | HyperAI