HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Pubmed 48 32 20 Fixed
Node Classification On Pubmed 48 32 20 Fixed
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
GCNII
90.15 ± 0.43
Simple and Deep Graph Convolutional Networks
Geom-GCN
89.95 ± 0.47
Geom-GCN: Geometric Graph Convolutional Networks
ACMII-GCN
89.89 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
89.82 ± 0.41
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
89.78 ± 0.49
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.71 ± 0.48
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
89.65 ± 0.58
Revisiting Heterophily For Graph Neural Networks
GloGNN
89.62 ± 0.35
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
O(d)-NSD
89.49 ± 0.40
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
H2GCN
89.49 ± 0.38
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Diag-NSD
89.42 ± 0.43
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
89.33 ± 0.35
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GloGNN++
89.24 ± 0.39
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GESN
89.20 ± 0.34
Addressing Heterophily in Node Classification with Graph Echo State Networks
GGCN
89.15 ± 0.37
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
ACM-SGC-2
89.01 ± 0.6
Revisiting Heterophily For Graph Neural Networks
NLGCN
89.0 ± 0.5
Non-Local Graph Neural Networks
WRGAT
88.52 ± 0.92
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
ACM-SGC-1
88.49 ± 0.51
Revisiting Heterophily For Graph Neural Networks
NLGAT
88.2 ± 0.3
Non-Local Graph Neural Networks
0 of 26 row(s) selected.
Previous
Next