HyperAI

Node Classification On Non Homophilic 8

Metriken

1:1 Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
Modellname1:1 Accuracy
joint-adaptive-feature-smoothing-and-topology82.55 ± 6.23
non-local-graph-neural-networks87.3 ± 4.3 
revisiting-heterophily-for-graph-neural88.43 ± 3.66
revisiting-heterophily-for-graph-neural86.47 ± 3.77
finding-global-homophily-in-graph-neural 88.04 ± 3.22 
beyond-low-frequency-information-in-graph79.61 ± 1.58
revisiting-heterophily-for-graph-neural88.43 ± 2.39
large-scale-learning-on-non-homophilous75.49 ± 5.72
addressing-heterophily-in-node-classification83.33 ± 3.81
simple-and-deep-graph-convolutional-networks-180.39 ± 3.40
mixhop-higher-order-graph-convolution75.88 ± 4.90 
geom-gcn-geometric-graph-convolutional-164.51 ± 3.66
two-sides-of-the-same-coin-heterophily-and86.86 ± 3.29 
revisiting-heterophily-for-graph-neural86.47 ± 3.77
neural-sheaf-diffusion-a-topological89.41 ± 4.74
non-local-graph-neural-networks60.2 ± 5.3 
generalizing-graph-neural-networks-beyond87.65 ± 4.98
neural-sheaf-diffusion-a-topological88.63 ± 2.75
breaking-the-limit-of-graph-neural-networks86.98 ± 3.78 
revisiting-heterophily-for-graph-neural88.43 ± 3.22
revisiting-heterophily-for-graph-neural87.45 ± 3.74
non-local-graph-neural-networks56.9 ± 7.3
finding-global-homophily-in-graph-neural87.06 ± 3.53 
revisiting-heterophily-for-graph-neural88.24 ± 3.16
neural-sheaf-diffusion-a-topological89.21 ± 3.84
revisiting-heterophily-for-graph-neural88.04 ± 3.66