HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 12
Node Classification On Non Homophilic 12
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
Repository
ACM-GCN
55.19 ± 1.49
Revisiting Heterophily For Graph Neural Networks
LINKX
61.81 ± 1.80
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
Deformable GCN
62.56 ± 1.31
Deformable Graph Convolutional Networks
ACM-GCN++
67.06 ± 1.66
Revisiting Heterophily For Graph Neural Networks
GESN
73.56 ± 1.62
Addressing Heterophily in Node Classification with Graph Echo State Networks
ScaleNet
76.0±2.0
Scale Invariance of Graph Neural Networks
Gen-NSD
53.17 ± 1.31
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
55.17 ± 1.58
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
WRGAT
48.85 ± 0.78
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
GloGNN++
57.88 ± 1.76
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
NLMLP
33.7 ± 1.5
Non-Local Graph Neural Networks
ACMII-GCN
51.8 ± 1.5
Revisiting Heterophily For Graph Neural Networks
GPRGCN
46.31 ± 2.46
Adaptive Universal Generalized PageRank Graph Neural Network
GCNII
38.47 ± 1.58
Simple and Deep Graph Convolutional Networks
O(d)-NSD
56.34 ± 1.32
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACM-GCN+
66.98 ± 1.71
Revisiting Heterophily For Graph Neural Networks
NLGCN
59.0 ± 1.2
Non-Local Graph Neural Networks
GloGNN
57.54 ± 1.39
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Dir-GNN
75.31±1.92
Edge Directionality Improves Learning on Heterophilic Graphs
ACM-SGC-2
40.02 ± 0.96
Revisiting Heterophily For Graph Neural Networks
0 of 29 row(s) selected.
Previous
Next