HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 11
Node Classification On Non Homophilic 11
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
Repository
FAGCN
46.07 ± 2.11
Beyond Low-frequency Information in Graph Convolutional Networks
NLMLP
50.7 ± 2.2
Non-Local Graph Neural Networks
ACM-GCN+
74.47 ± 1.84
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
69.14 ± 1.91
Revisiting Heterophily For Graph Neural Networks
Diag-NSD
68.68 ± 1.73
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
O(d)-NSD
68.04 ± 1.58
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN
68.46 ± 1.7
Revisiting Heterophily For Graph Neural Networks
Dir-GNN
79.71±1.26
Edge Directionality Improves Learning on Heterophilic Graphs
ACM-GCN++
74.41 ± 1.49
Revisiting Heterophily For Graph Neural Networks
GPRGCN
62.59 ± 2.04
Adaptive Universal Generalized PageRank Graph Neural Network
ScaleNet
80.1±1.5
Scale Invariance of Graph Neural Networks
Gen-NSD
67.93 ± 1.58
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN++
74.76 ± 2.2
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
74.56 ± 2.08
Revisiting Heterophily For Graph Neural Networks
NLGAT
65.7 ± 1.4
Non-Local Graph Neural Networks
WRGAT
65.24 ± 0.87
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
GESN
77.05 ± 1.24
Addressing Heterophily in Node Classification with Graph Echo State Networks
MixHop
60.50 ± 2.53
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GloGNN++
71.21 ± 1.84
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
H2GCN
60.11 ± 2.15
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
0 of 29 row(s) selected.
Previous
Next