HyperAI

Graph Property Prediction On Ogbg Molpcba

Metriken

Ext. data
Number of params
Test AP
Validation AP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameExt. dataNumber of paramsTest APValidation AP
graph-convolutions-that-can-finally-modelNo61470290.2979 ± 0.00300.3126 ± 0.0023
graph-learning-with-1d-convolutions-on-randomNo61157280.2986 ± 0.00250.3075 ± 0.0020
how-powerful-are-graph-neural-networksNo33745330.2703 ± 0.00230.2798 ± 0.0025
unlocking-the-potential-of-classic-gnns-forNo60168600.2981 ± 0.00240.3011 ± 0.0037
semi-supervised-classification-with-graphNo5659280.2020 ± 0.00240.2059 ± 0.0033
parameterized-hypercomplex-graph-neuralNo16903280.2947 ± 0.00260.3068 ± 0.0025
flag-adversarial-data-augmentation-for-graph-1No20170280.2483 ± 0.00370.2556 ± 0.0040
Modell 8No108870850.3204 ± 0.00010.3353 ± 0.0002
from-stars-to-subgraphs-uplifting-any-gnnNo30810290.2930 ± 0.00440.3047 ± 0.0007
triplet-interaction-improves-graphYes470000000.3167 ± 0.0031-
nested-graph-neural-networksNo441874800.3007 ± 0.00370.3059 ± 0.0056
semi-supervised-classification-with-graphNo20170280.2424 ± 0.00340.2495 ± 0.0042
nested-graph-neural-networks--0.3007 ± 0.00370.3059 ± 0.0056
do-transformers-really-perform-bad-for-graph-1195296640.3140 ± 0.00320.3227 ± 0.0024
towards-better-graph-representation-learningNo38420480.3031 ± 0.00260.3115 ± 0.0020
directional-graph-networks-1No67326960.2885 ± 0.00300.2970 ± 0.0021
recipe-for-a-general-powerful-scalable-graphNo97444960.29070.3015 ± 0.0038
do-transformers-really-perform-bad-for-graphYes1195296640.3140 ± 0.00320.3227 ± 0.0024
principal-neighbourhood-aggregation-for-graphNo65508390.2838 ± 0.00350.2926 ± 0.0026
ran-gnns-breaking-the-capacity-limits-ofNo55720260.2881 ± 0.00280.3035 ± 0.0047
graph-convolutions-that-can-finally-modelNo61470290.2917 ± 0.00150.3065 ± 0.0030
nested-graph-neural-networks--0.2832 ± 0.00410.2915 ± 0.0035
Modell 23No55609600.3012 ± 0.00390.3151 ± 0.0047
flag-adversarial-data-augmentation-for-graph-1No19234330.2395 ± 0.00400.2451 ± 0.0042
flag-adversarial-data-augmentation-for-graph-1No5659280.2116 ± 0.00170.2150 ± 0.0022
Modell 26No294400000.2054 ± 0.00040.2226 ± 0.0002
flag-adversarial-data-augmentation-for-graph-1No55502080.2842 ± 0.00430.2952 ± 0.0029
edge-augmented-graph-transformers-global-self--0.2961 ± 0.0024-
flag-adversarial-data-augmentation-for-graph-1No33745330.2834 ± 0.00380.2912 ± 0.0026
deepergcn-all-you-need-to-train-deeper-gcnsNo55502080.2781 ± 0.00380.2920 ± 0.0025
Modell 31No108870850.3204 ± 0.00010.3353 ± 0.0002
Modell 32Yes1195296650.3167 ± 0.00340.3252 ± 0.0043
convolutional-neural-networks-on-graphs-withNo14750030.2306 ± 0.00160.2372 ± 0.0018
how-powerful-are-graph-neural-networksNo19234330.2266 ± 0.00280.2305 ± 0.0027
next-level-message-passing-with-hierarchical--0.3129±0.0020-
Modell 36No55116800.2994 ± 0.00190.3094 ± 0.0023