HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Gesichtsausdruckserkennung
Facial Expression Recognition On Fer 1
Facial Expression Recognition On Fer 1
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
PAtt-Lite
95.55
PAtt-Lite: Lightweight Patch and Attention MobileNet for Challenging Facial Expression Recognition
GReFEL
93.09
GReFEL: Geometry-Aware Reliable Facial Expression Learning under Bias and Imbalanced Data Distribution
QCS
91.85
QCS: Feature Refining from Quadruplet Cross Similarity for Facial Expression Recognition
ResNet18 Dense Architecture
91.41
Real Time Emotion Analysis Using Deep Learning for Education, Entertainment, and Beyond
DDAMFN
90.74
A Dual-Direction Attention Mixed Feature Network for Facial Expression Recognition
KTN
90.49
Adaptively Learning Facial Expression Representation via C-F Labels and Distillation
Vit-base + MAE
90.18
Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers
FER-VT
90.04
Facial expression recognition with grid-wise attention and visual transformer
EAC
89.64
Learn From All: Erasing Attention Consistency for Noisy Label Facial Expression Recognition
LResNet50E-IR
89.257
Exploring Emotion Features and Fusion Strategies for Audio-Video Emotion Recognition
ViT-base
88.91
Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers
ViT-tiny
88.56
Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers
Local Learning Deep + BOW
87.76
Local Learning with Deep and Handcrafted Features for Facial Expression Recognition
Ensemble with Shared Representations (ESR-9)
87.15
Efficient Facial Feature Learning with Wide Ensemble-based Convolutional Neural Networks
0 of 14 row(s) selected.
Previous
Next
Facial Expression Recognition On Fer 1 | SOTA | HyperAI