HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Chinesische Namensentitätserkennung
Chinese Named Entity Recognition On Ontonotes
Chinese Named Entity Recognition On Ontonotes
Metriken
F1
Precision
Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
F1
Precision
Recall
Paper Title
BERT-MRC+DSC
84.47
-
-
Dice Loss for Data-imbalanced NLP Tasks
W2NER
83.08
-
-
Unified Named Entity Recognition as Word-Word Relation Classification
Baseline + BS
82.83
-
-
Boundary Smoothing for Named Entity Recognition
BERT-MRC
82.11
-
-
A Unified MRC Framework for Named Entity Recognition
FGN
82.04
-
-
FGN: Fusion Glyph Network for Chinese Named Entity Recognition
FLAT+BERT
81.82
-
-
FLAT: Chinese NER Using Flat-Lattice Transformer
AESINER
81.18
-
-
Improving Named Entity Recognition with Attentive Ensemble of Syntactic Information
Glyce + BERT
80.62
81.87
81.4
Glyce: Glyph-vectors for Chinese Character Representations
SLK-NER
80.2
-
-
SLK-NER: Exploiting Second-order Lexicon Knowledge for Chinese NER
NFLAT
77.21
75.17
79.37
NFLAT: Non-Flat-Lattice Transformer for Chinese Named Entity Recognition
FLAT
76.45
-
-
FLAT: Chinese NER Using Flat-Lattice Transformer
LSTM + Lexicon augment
75.54
-
-
Simplify the Usage of Lexicon in Chinese NER
LGN
74.89
76.13
73.68
A Lexicon-Based Graph Neural Network for Chinese NER
Lattice
73.88
-
-
Chinese NER Using Lattice LSTM
CAN-NER Model
73.64
75.05
72.29
CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition
0 of 15 row(s) selected.
Previous
Next
Chinese Named Entity Recognition On Ontonotes | SOTA | HyperAI