3D Multi Object Tracking On Waymo Open 1
Metriken
MOTA/L2
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
| Paper Title | ||
|---|---|---|
| RobMOT | 0.7466 | 0/1 Deep Neural Networks via Block Coordinate Descent |
| CTRL_FSD_TTA | 0.7429 | FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels |
| DRTracker | 0.6675 | - |
| Trajectoryformer | 0.6573 | - |
| InceptioLidar | 0.6558 | - |
| HorizonMOT3D | 0.6407 | - |
| CasTrack | 0.6366 | - |
| MFMS_Track | 0.6314 | - |
| Fast-Poly | 0.6306 | - |
| OptMOT | 0.6218 | - |
| ImmortalTracker | 0.6055 | Immortal Tracker: Tracklet Never Dies |
| YONTD_MOT | 0.6048 | - |
| SimpleTrack | 0.6018 | SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking |
| REIDMOT3D | 0.5961 | - |
| BTT | 0.5949 | - |
| CenterPoint | 0.5938 | - |
0 of 16 row(s) selected.