HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 视觉问答 (VQA)
  4. Visual Question Answering On Vcr Q A Test

Visual Question Answering On Vcr Q A Test

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
VL-BERTLARGE75.8VL-BERT: Pre-training of Generic Visual-Linguistic Representations
MAD (Single Model, Formerly CLIP-TD)79.6Multimodal Adaptive Distillation for Leveraging Unimodal Encoders for Vision-Language Tasks-
UNITER (Large)77.3UNITER: UNiversal Image-TExt Representation Learning
GPT4RoI89.4GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest
VisualBERT71.6VisualBERT: A Simple and Performant Baseline for Vision and Language
ERNIE-ViL-large(ensemble of 15 models)81.6ERNIE-ViL: Knowledge Enhanced Vision-Language Representations Through Scene Graph-
UNITER-large (10 ensemble)79.8UNITER: UNiversal Image-TExt Representation Learning
OFA-X71.2Harnessing the Power of Multi-Task Pretraining for Ground-Truth Level Natural Language Explanations
OFA-X-MT62Harnessing the Power of Multi-Task Pretraining for Ground-Truth Level Natural Language Explanations
VL-T575.3Unifying Vision-and-Language Tasks via Text Generation
KVL-BERTLARGE76.4KVL-BERT: Knowledge Enhanced Visual-and-Linguistic BERT for Visual Commonsense Reasoning-
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili