HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 表面法线估计
  4. Surface Normals Estimation On Pcpnet

Surface Normals Estimation On Pcpnet

评估指标

RMSE

评测结果

各个模型在此基准测试上的表现结果

模型名称
RMSE
Paper TitleRepository
Nesti-Net12.41Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds using Convolutional Neural Networks
Hsurf10.11HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces
AdaFit10.76AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds
MSECNet9.76MSECNet: Accurate and Robust Normal Estimation for 3D Point Clouds by Multi-Scale Edge Conditioning
GraphFit10.26GraphFit: Learning Multi-scale Graph-Convolutional Representation for Point Cloud Normal Estimation
DeepFit11.8DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
NeAF10.22NeAF: Learning Neural Angle Fields for Point Normal Estimation
Iter-Net11.84Deep Iterative Surface Normal Estimation
0 of 8 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili