HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Sentiment Analysis
Sentiment Analysis On Mr
Sentiment Analysis On Mr
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
VLAWE
93.3
Vector of Locally-Aggregated Word Embeddings (VLAWE): A Novel Document-level Representation
RoBERTa-large 355M + Entailment as Few-shot Learner
92.5
Entailment as Few-Shot Learner
SGC
75.9
Simplifying Graph Convolutional Networks
SGCN
75.9
Simplifying Graph Convolutional Networks
RNN-Capsule
83.8
Sentiment Analysis by Capsules
byte mLSTM7
86.8
A La Carte Embedding: Cheap but Effective Induction of Semantic Feature Vectors
S-LSTM
76.2
Sentence-State LSTM for Text Representation
TM-Glove
77.51
Enhancing Interpretable Clauses Semantically using Pretrained Word Representation
MEAN
84.5
A Multi-sentiment-resource Enhanced Attention Network for Sentiment Classification
-
SuBiLSTM-Tied
81.6
Improved Sentence Modeling using Suffix Bidirectional LSTM
-
Millions of Emoji
-
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
AnglE-LLaMA-7B
91.09
AnglE-optimized Text Embeddings
SWEM-concat
78.2
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
GraphStar
76.6
Graph Star Net for Generalized Multi-Task Learning
Text GCN
76.74
Graph Convolutional Networks for Text Classification
GRU-RNN-WORD2VEC
78.26
All-but-the-Top: Simple and Effective Postprocessing for Word Representations
Capsule-B
82.3
Investigating Capsule Networks with Dynamic Routing for Text Classification
STM+TSED+PT+2L
80.09
The Pupil Has Become the Master: Teacher-Student Model-Based Word Embedding Distillation with Ensemble Learning
USE_T+CNN
81.59
Universal Sentence Encoder
0 of 19 row(s) selected.
Previous
Next