HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Semi Supervised Image Classification
Semi Supervised Image Classification On Svhn
Semi Supervised Image Classification On Svhn
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Triple-GAN-V2 (CNN-13, no aug)
96.04
Triple Generative Adversarial Networks
UDA
97.54
Unsupervised Data Augmentation for Consistency Training
DoubleMatch
97.90 ± 0.07
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
ICT (WRN-28-2)
96.47
Interpolation Consistency Training for Semi-Supervised Learning
ICT
96.11
Interpolation Consistency Training for Semi-Supervised Learning
SESEMI SSL (ConvNet)
94.41
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
MixMatch
96.73
MixMatch: A Holistic Approach to Semi-Supervised Learning
GAN
91.89
Improved Techniques for Training GANs
Meta Pseudo Labels (WRN-28-2)
98.01 ± 0.07
Meta Pseudo Labels
Triple-GAN-V2 (CNN-13)
96.55
Triple Generative Adversarial Networks
Mean Teacher
96.05
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
FixMatch (CTA)
97.64±0.19
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
ReMixMatch
97.17
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
-
VAT
94.58
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
R2-D2 (CNN-13)
96.36
Repetitive Reprediction Deep Decipher for Semi-Supervised Learning
FCE
96.13
Flow Contrastive Estimation of Energy-Based Models
EnAET
97.58
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
0 of 17 row(s) selected.
Previous
Next