HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 关系提取
  4. Relation Extraction On Nyt

Relation Extraction On Nyt

评估指标

F1

评测结果

各个模型在此基准测试上的表现结果

模型名称
F1
Paper TitleRepository
DIRECT92.5Adjacency List Oriented Relational Fact Extraction via Adaptive Multi-task Learning
SPN92.5Joint Entity and Relation Extraction with Set Prediction Networks
ReLiK-Base94.8ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
ReLiK-Large95ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
REBEL (no pre-training)93.1REBEL: Relation Extraction By End-to-end Language generation-
ReLiK-Small94.4ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
TDEER92.5TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations-
UniRel93.7UniRel: Unified Representation and Interaction for Joint Relational Triple Extraction
0 of 8 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili