HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Relation Extraction
Relation Extraction On Ace 2004
Relation Extraction On Ace 2004
评估指标
Cross Sentence
NER Micro F1
RE+ Micro F1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Cross Sentence
NER Micro F1
RE+ Micro F1
Paper Title
Repository
Multi-turn QA
No
83.6
49.4
Entity-Relation Extraction as Multi-Turn Question Answering
PFN
No
89.3
62.5
A Partition Filter Network for Joint Entity and Relation Extraction
Ours: cross-sentence ALB
Yes
90.3
62.2
A Frustratingly Easy Approach for Entity and Relation Extraction
PL-Marker
Yes
90.4
66.5
Packed Levitated Marker for Entity and Relation Extraction
Joint w/ Global
No
79.7
45.3
-
-
SPTree
No
81.8
48.4
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures
Attention
No
79.6
45.7
Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees
-
Table-Sequence
No
88.6
59.6
Two are Better than One: Joint Entity and Relation Extraction with Table-Sequence Encoders
multi-head + AT
No
81.64
47.45
Adversarial training for multi-context joint entity and relation extraction
multi-head
No
81.16
47.14
Joint entity recognition and relation extraction as a multi-head selection problem
DyGIE
Yes
87.4
-
A General Framework for Information Extraction using Dynamic Span Graphs
0 of 11 row(s) selected.
Previous
Next