HyperAI超神经

Panoptic Segmentation On Cityscapes Val

评估指标

AP
PQ
PQst
PQth
mIoU

评测结果

各个模型在此基准测试上的表现结果

模型名称
AP
PQ
PQst
PQth
mIoU
Paper TitleRepository
AFF-Base (single-scale, point-based Mask2Former)46.267.771.562.583.0AutoFocusFormer: Image Segmentation off the Grid
AdaptIS (ResNeXt-101)36.362.064.458.779.2AdaptIS: Adaptive Instance Selection Network
AUNet (ResNet-101-FPN)34.459.062.154.875.6Attention-guided Unified Network for Panoptic Segmentation-
DiNAT-L (Mask2Former)44.567.2--83.4Dilated Neighborhood Attention Transformer
TASCNet (ResNet-50, multi-scale)3960.463.356.178Learning to Fuse Things and Stuff-
Panoptic-DeepLab (X71)38.564.1--81.5Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
AdaptIS (ResNet-101)33.960.662.957.577.2AdaptIS: Adaptive Instance Selection Network
Panoptic FCN* (ResNet-50-FPN)--66.6--Fully Convolutional Networks for Panoptic Segmentation
CMT-DeepLab (MaX-S, single-scale, IN-1K)-64.6--81.4CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
OneFormer (ConvNeXt-XL, single-scale)46.768.4--83.6OneFormer: One Transformer to Rule Universal Image Segmentation
Dynamically Instantiated Network (ResNet-101)28.653.862.142.579.8Weakly- and Semi-Supervised Panoptic Segmentation
DeeperLab (Xception-71)-56.5---DeeperLab: Single-Shot Image Parser-
Axial-DeepLab-XL (Mapillary Vistas, multi-scale) 44.268.5--84.6Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
COPS (ResNet-50)34.162.167.255.179.3Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach
Panoptic FCN* (Swin-L, Cityscapes-fine)-- 70.659.5-Fully Convolutional Networks for Panoptic Segmentation
AFF-Small (single-scale, point-based Mask2Former)44.266.970.861.582.2AutoFocusFormer: Image Segmentation off the Grid
Panoptic FPN (ResNet-101)33.058.162.552.075.7Panoptic Feature Pyramid Networks
OneFormer (Swin-L, single-scale)45.667.2--83.0OneFormer: One Transformer to Rule Universal Image Segmentation
TASCNet (ResNet-50)37.659.261.55677.8Learning to Fuse Things and Stuff-
OneFormer (DiNAT-L, single-scale)45.667.6--83.1OneFormer: One Transformer to Rule Universal Image Segmentation
0 of 36 row(s) selected.