HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Long Tail Learning
Long Tail Learning On Coco Mlt
Long Tail Learning On Coco Mlt
评估指标
Average mAP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average mAP
Paper Title
Repository
DB Focal(ResNet-50)
53.55
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
PG Loss(ResNet-50)
54.43
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
-
LDAM(ResNet-50)
40.53
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
RS(ResNet-50)
46.97
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
ML-GCN(ResNet-50)
44.24
Multi-Label Image Recognition with Graph Convolutional Networks
Focal Loss(ResNet-50)
49.46
Focal Loss for Dense Object Detection
LMPT(ResNet-50)
58.97
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
OLTR(ResNet-50)
45.83
Large-Scale Long-Tailed Recognition in an Open World
LTML(ResNet-50)
56.90
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
-
CB Loss(ResNet-50)
49.06
Class-Balanced Loss Based on Effective Number of Samples
CLIP(ViT-B/16)
60.17
Learning Transferable Visual Models From Natural Language Supervision
CLIP(ResNet-50)
56.19
Learning Transferable Visual Models From Natural Language Supervision
LMPT(ViT-B/16)
66.19
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
0 of 13 row(s) selected.
Previous
Next