HyperAI超神经

6D Pose Estimation On Linemod

评估指标

Accuracy
Mean ADD
Mean IoU

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称AccuracyMean ADDMean IoU
real-time-seamless-single-shot-6d-object-pose90.37%55.9599.92
bpnp-further-empowering-end-to-end-learning99.21%--
pvnet-pixel-wise-voting-network-for-6dof-pose99%86.27-
repose-real-time-iterative-rendering-and-96.1-
cullnet-calibrated-and-pose-aware-confidence97.7%78.3-
cdpn-coordinates-based-disentangled-pose98.1%89.86-
bb8-a-scalable-accurate-robust-to-partial83.9%43.6-
end-to-end-differentiable-6dof-object-pose-86.8-
epro-pnp-generalized-end-to-end-probabilistic-1-96.36-
efficientpose-an-efficient-accurate-and-97.35-
bpnp-further-empowering-end-to-end-learning-93.3-
estimating-6d-pose-from-localizing-designated94.5%72.6-
ssd-6d-making-rgb-based-3d-detection-and-6d-76.399.4
pix2pose-pixel-wise-coordinate-regression-of-32-
rnnpose-recurrent-6-dof-object-pose-97.37-
epro-pnp-generalized-end-to-end-probabilistic-95.8-
implicit-3d-orientation-learning-for-6d-28.7-
dpod-dense-6d-pose-object-detector-in-rgb-95.2-
occlusion-robust-object-pose-estimation-with-95.61-
yolov5-6d-advancing-6-dof-instrument-pose-96.84-
deepim-deep-iterative-matching-for-6d-pose97.588.6-
hybridpose-6d-object-pose-estimation-under-91.3-