HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 三维物体检测
  4. 3D Object Detection On Kitti Pedestrians Hard

3D Object Detection On Kitti Pedestrians Hard

评估指标

AP

评测结果

各个模型在此基准测试上的表现结果

模型名称
AP
Paper TitleRepository
STD41.97%STD: Sparse-to-Dense 3D Object Detector for Point Cloud-
IPOD42.39%IPOD: Intensive Point-based Object Detector for Point Cloud-
VoxelNet31.51%VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection-
F-ConvNet41.49%Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection-
Frustrum-PointPillars39.28 %Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
M3DeTR38.75%M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers-
Frustum PointNets40.23%Frustum PointNets for 3D Object Detection from RGB-D Data-
SVGA-Net44.56%SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds-
AVOD + Feature Pyramid40.88%Joint 3D Proposal Generation and Object Detection from View Aggregation-
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili