HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists Easy
3D Object Detection On Kitti Cyclists Easy
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
Repository
Frustum PointNets
71.96%
Frustum PointNets for 3D Object Detection from RGB-D Data
PointRCNN
73.93%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
VoxelNet
61.22%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
AVOD + Feature Pyramid
64.0%
Joint 3D Proposal Generation and Object Detection from View Aggregation
M3DeTR
83.83%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
STD
78.89%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
F-ConvNet
79.58%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
3D-FCT
89.15%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
IPOD
71.40%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
SVGA-Net
79.22%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
PointPillars
75.78%
PointPillars: Fast Encoders for Object Detection from Point Clouds
PV-RCNN
78.60%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
0 of 12 row(s) selected.
Previous
Next