HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
3D Object Detection
3D Object Detection On Kitti Cars Hard
3D Object Detection On Kitti Cars Hard
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
Repository
SA-SSD+EBM
72.78%
Accurate 3D Object Detection using Energy-Based Models
Joint
74.30%
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
-
F-ConvNet
68.08%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
3D Dual-Fusion
79.39%
3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection
PC-RGNN
75.54%
PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection
-
SVGA-Net
74.63%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
57.73%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
TRTConv
80.38 %
-
-
PV-RCNN++
77.15%
PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection
UberATG-MMF
68.41%
Multi-Task Multi-Sensor Fusion for 3D Object Detection
-
PC-CNN-V2
64.83%
A General Pipeline for 3D Detection of Vehicles
-
GLENet-VR
78.43%
GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
M3DeTR
76.96%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
Voxel R-CNN
77.06
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
PGD
9.39%
Probabilistic and Geometric Depth: Detecting Objects in Perspective
AVOD + Feature Pyramid
66.38%
Joint 3D Proposal Generation and Object Detection from View Aggregation
IPOD
66.33%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
62.19%
Frustum PointNets for 3D Object Detection from RGB-D Data
PV-RCNN
76.82%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
STD
76.06%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
0 of 25 row(s) selected.
Previous
Next