HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 三维物体检测
  4. 3D Object Detection On Dair V2X I

3D Object Detection On Dair V2X I

评估指标

AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)

评测结果

各个模型在此基准测试上的表现结果

模型名称
AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)
Paper TitleRepository
MonoUNI90.9287.287.2MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues-
PointPillars63.154.054.0PointPillars: Fast Encoders for Object Detection from Point Clouds
BEVHeight77.865.965.8BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
MVXNet71.053.853.7MVX-Net: Multimodal VoxelNet for 3D Object Detection
CBR72.060.160.1Calibration-free BEV Representation for Infrastructure Perception
CoBEV82.069.769.6CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity
BEVFormer61.450.750.7BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers
BEVDepth75.763.763.6BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection
ImVoxelNet44.837.637.6ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili