11 天前

面向在线社交网络共享图像的鲁棒图像伪造检测

{Jun Liu, Jinyu Tian, Jiantao Zhou, Haiwei Wu}
面向在线社交网络共享图像的鲁棒图像伪造检测
摘要

图像编辑软件(如Photoshop和美图秀秀)的滥用,使得数字图像的真实性日益受到质疑。与此同时,在线社交网络(OSNs)的广泛普及,使其成为传播伪造图像、制造虚假新闻和散布谣言的主要渠道。然而,OSNs普遍采用的各类有损操作(如压缩和缩放)给图像伪造检测技术的鲁棒性带来了巨大挑战。为应对OSNs共享环境下的伪造图像问题,本文提出了一种新颖的鲁棒训练机制。首先,我们对OSNs引入的噪声进行了深入分析,并将其解耦为两类:可预测噪声与不可见噪声,分别进行建模。前者用于模拟OSNs中已知(公开)操作所引入的噪声,后者则不仅补充了前者的不足,还考虑了检测器自身可能存在的缺陷。随后,我们将建模后的噪声引入鲁棒训练框架,显著提升了图像伪造检测器的鲁棒性能。大量实验结果表明,所提方法在多项指标上均优于现有多种先进方法。最后,为推动图像伪造检测技术的进一步发展,我们基于四个现有数据集和三大主流在线社交网络,构建了一个公开的伪造图像数据集。所设计的检测器已在近期举办的证书伪造检测竞赛中荣获第一名。相关源代码与数据集已开源,地址为:https://github.com/HighwayWu/ImageForensicsOSN。

面向在线社交网络共享图像的鲁棒图像伪造检测 | 最新论文 | HyperAI超神经