11 天前

Polaratio:一种与幅度相关的单调相关性度量及其在单细胞RNA测序聚类中的改进

{Chandra Mohan, Anto Sam Crosslee Louis Sam Titus, Pietro Antonio Cicalese, Victor Wang}
摘要

动机:单细胞RNA测序(scRNA-seq)技术及其分析工具使研究人员得以对细胞与基因之间的功能角色及相互关系获得极为精细的洞察。然而,传统的距离度量方法(如欧几里得距离、皮尔逊相关系数和斯皮尔曼等级相关距离)难以同时兼顾基因表达数据的高维度性、单调性以及表达量的幅度特征。为克服这些常用度量方法的若干局限性,我们提出了一种新型的、基于表达量大小的单调相关性度量方法——Polaratio,旨在提升单细胞RNA测序数据分析的质量。结果:我们通过一种共识细胞聚类流程,整合了三种先进的可解释性聚类算法——单细胞共识聚类(SC3)、层次聚类(HC)和K-中值聚类(KM),并在多个生物数据集上对Polaratio进行了评估,以对比其与多种经典度量方法的性能。结果表明,Polaratio在7个公开可用数据集中的5个上显著提升了细胞聚类的准确性。可用性:https://github.com/dubai03nsr/Polaratio联系人:[email protected]