16 天前

高光谱图像的特征提取:基于图像融合与递归滤波的方法

{Jón Atli Benediktsson, Shutao Li, Xudong Kang}
摘要

特征提取被证实是降低高光谱图像分类计算复杂度并提升分类精度的有效手段。本文提出了一种简单但极具效能的特征提取方法,即基于图像融合与递归滤波(Image Fusion and Recursive Filtering, IFRF)的方法。首先,将高光谱图像按相邻的光谱波段划分为多个子集;随后,对每个子集内的波段采用均值融合的方式进行合并,这是一种最为基础的图像融合方法;最后,对融合后的波段在变换域中应用递归滤波,以提取用于分类的特征。在多种高光谱图像数据集上进行了实验,采用支持向量机(Support Vector Machines, SVMs)作为分类器。实验结果表明,采用所提IFRF方法可显著提升SVM分类器的分类精度。此外,与现有的其他高光谱图像分类方法相比,该IFRF方法在分类准确率和计算效率方面均表现出优异性能。

高光谱图像的特征提取:基于图像融合与递归滤波的方法 | 最新论文 | HyperAI超神经