
摘要
多领域泛化(multi-domain generalization, mDG)的普遍目标是缩小训练分布与测试分布之间的差异,从而提升边缘分布到标签分布的映射能力。然而,现有的mDG研究缺乏统一的学习目标范式,且通常对静态的目标边缘分布施加严格约束。本文提出引入一种$Y$-映射($Y$-mapping)以放宽此类约束。我们重新审视mDG的学习目标,设计了一种新的通用学习目标,用以解释和分析现有大部分mDG方法的核心思想。该通用目标被分解为两个协同作用的子目标:学习领域无关的条件特征,以及最大化后验概率。此外,我们进一步探索了两种有效的正则化项,分别用于融入先验信息并抑制无效因果关系,从而缓解因约束放松而可能引发的问题。理论上,我们推导出领域无关条件特征的领域对齐性的上界,揭示出以往多数mDG方法实际上仅部分优化了该目标,因而导致性能受限。基于此,本研究将通用学习目标提炼为四个实用组件,构建了一个通用、稳健且灵活的机制,以应对复杂的领域偏移问题。大量实验结果表明,结合$Y$-映射的所提目标在多种下游任务中均显著提升了mDG性能,涵盖回归、分割与分类等任务。