8 天前

CARLANE:面向从仿真到多个真实世界场景的无监督域自适应车道检测基准

Julian Gebele, Bonifaz Stuhr, Johann Haselberger
CARLANE:面向从仿真到多个真实世界场景的无监督域自适应车道检测基准
摘要

无监督域自适应(Unsupervised Domain Adaptation, UDA)在缓解域偏移问题方面展现出巨大潜力,能够将标注源域上的模型迁移至未标注的目标域。尽管无监督域自适应已被广泛应用于多种复杂的视觉任务,但针对自动驾驶中车道检测的研究仍相对较少。这一现象主要归因于公开可用数据集的匮乏。为推动该领域的研究进展,我们提出了CARLANE——一个面向二维车道检测的三向“仿真到真实”(sim-to-real)域自适应基准。CARLANE涵盖单目标数据集MoLane和TuLane,以及多目标数据集MuLane。这些数据集源自三个不同的域,覆盖了多样化的场景,共计包含16.3万张唯一图像,其中11.8万张已进行标注。此外,我们系统性地评估并报告了多个基准方法,包括我们提出的方法——该方法基于原型跨域自监督学习(Prototypical Cross-domain Self-supervised Learning)。实验结果表明,所评估的域自适应方法在误报率与漏报率方面均显著高于完全监督基线模型。这一发现进一步凸显了构建类似CARLANE这样的基准测试平台在推动无监督域自适应于车道检测领域研究中的必要性。CARLANE基准、所有评估模型及其对应实现代码均已公开,可访问 https://carlanebenchmark.github.io。