2 个月前

基于跨流原型对比的自监督视频表征学习

Martine Toering; Ioannis Gatopoulos; Maarten Stol; Vincent Tao Hu
基于跨流原型对比的自监督视频表征学习
摘要

实例级对比学习技术依赖于数据增强和对比损失函数,在视觉表示学习领域取得了显著成功。然而,这些技术并不适合利用视频中的丰富动态结构,因为操作是在许多增强实例上进行的。在本文中,我们提出了一种新颖的方法——“视频跨流原型对比”(Video Cross-Stream Prototypical Contrasting),该方法从RGB视图和光流视图中预测一致的原型分配,操作对象为样本集。具体而言,我们交替优化过程;在优化其中一个流时,所有视图都被映射到一组流原型向量。每个分配都是通过除匹配预测视图外的所有视图进行预测的,从而将表示推向其分配的原型。因此,该方法能够在推理过程中无需显式计算光流的情况下,学习到包含运动信息的更高效的视频嵌入。我们在最近邻视频检索和动作识别任务上获得了最先进的结果,在使用S3D骨干网络的情况下,在UCF101数据集上的Top-1准确率比之前最佳方法提高了3.2%(达到90.5%),而在使用R(2+1)D骨干网络的情况下,在UCF101数据集上的准确率提高了7.2%,在HMDB51数据集上的准确率提高了15.1%。

基于跨流原型对比的自监督视频表征学习 | 最新论文 | HyperAI超神经