11 天前
通过协变量偏移适应提升对常见噪声的鲁棒性
Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, Matthias Bethge

摘要
当前最先进的机器视觉模型容易受到图像退化(如模糊或压缩伪影)的影响,这在许多实际应用场景中限制了其性能表现。本文指出,目前广泛使用的评估模型对常见图像退化鲁棒性的基准(如ImageNet-C)在许多(但并非全部)应用情境下低估了模型的真实鲁棒性。其核心洞察在于:在许多实际场景中,可获取多个未标注的退化图像样本,这些样本可用于无监督的在线自适应。通过用退化图像本身的激活统计量替代训练集上由批量归一化(Batch Normalization)估计的统计量,我们发现这一方法在25种主流计算机视觉模型上均能一致地提升模型鲁棒性。以ResNet-50为例,采用修正后的统计量后,其在ImageNet-C上的平均分类误差(mCE)从未经适应的76.7%降低至62.2%。对于更具鲁棒性的DeepAugment+AugMix模型,我们进一步将当前ResNet-50架构所达到的最先进水平从53.6% mCE提升至45.4% mCE。值得注意的是,仅使用单个样本进行适应即可显著提升ResNet-50与AugMix模型的鲁棒性,而仅需32个样本即可使ResNet-50架构的性能超越当前最优水平。我们主张,在报告退化基准测试结果以及其他分布外泛化场景下的性能指标时,应始终包含经过统计量自适应后的结果,以更真实地反映模型在现实应用中的表现。