17 天前

改进的少样本视觉分类

Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, Leonid Sigal
改进的少样本视觉分类
摘要

少样本学习是计算机视觉领域的一项基础任务,其核心目标在于缓解对大规模人工标注数据的依赖。迄今为止,大多数少样本学习方法主要聚焦于构建日益复杂的神经特征提取器与分类器适应策略,以及对任务定义本身的不断优化。本文提出一个新假设:将一种简单的基于类别协方差的距离度量——马氏距离(Mahalanobis distance),引入到当前最先进的少样本学习框架(CNAPS)中,即可独立实现显著的性能提升。我们进一步发现,通过设计可自适应的特征提取器,仅需极少样本即可有效估计该度量所依赖的高维特征协方差矩阵。基于上述发现,我们提出了一种新型的“Simple CNAPS”架构,其可训练参数数量比原始CNAPS减少高达9.2%,并在标准少样本图像分类基准数据集上,性能较当前最优方法提升最高达6.1%。

改进的少样本视觉分类 | 最新论文 | HyperAI超神经