HyperAIHyperAI

Command Palette

Search for a command to run...

S4L: 自监督半监督学习

Xiaohua Zhai* Avital Oliver* Alexander Kolesnikov* Lucas Beyer*

摘要

这项研究致力于解决图像分类器的半监督学习问题。我们的主要见解是,半监督学习领域可以从快速发展的自监督视觉表示学习领域中获益。通过统一这两种方法,我们提出了自监督半监督学习框架,并利用该框架推导出两种新颖的半监督图像分类方法。我们展示了这些方法在与精心调校的基线模型以及现有的半监督学习方法相比时的有效性。此外,我们还证明了我们的方法可以与现有的半监督学习方法联合训练,从而在仅使用10%标签的情况下,在ILSVRC-2012数据集上取得了新的半监督学习最佳结果。


用 AI 构建 AI

从创意到上线——通过免费 AI 协同编码、开箱即用的环境和最优惠的 GPU 价格,加速您的 AI 开发。

AI 协同编码
开箱即用的 GPU
最优定价

HyperAI Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
S4L: 自监督半监督学习 | 论文 | HyperAI超神经