HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تقييم جودة الفيديو
Video Quality Assessment On Msu Video Quality
Video Quality Assessment On Msu Video Quality
المقاييس
KLCC
PLCC
SRCC
Type
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
KLCC
PLCC
SRCC
Type
Paper Title
MDTVSFA
0.7883
0.9431
0.9289
NR
Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training
DBCNN
0.7750
0.9222
0.9220
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
UNIQUE
0.7648
0.9238
0.9148
NR
UNIQUE: Unsupervised Image Quality Estimation
LI
0.7640
0.9270
0.9131
NR
Blindly Assess Quality of In-the-Wild Videos via Quality-aware Pre-training and Motion Perception
LINEARITY
0.7589
0.9106
0.9104
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
VSFA
0.7483
0.9180
0.9049
NR
Quality Assessment of In-the-Wild Videos
MUSIQ
0.7433
0.9068
0.9004
NR
MUSIQ: Multi-scale Image Quality Transformer
DOVER
0.7216
0.9099
0.8871
NR
Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives
SPAQ MT-S
0.7186
0.8814
0.8822
NR
Perceptual Quality Assessment of Smartphone Photography
SPAQ MT-A
0.7148
0.8824
0.8794
NR
Perceptual Quality Assessment of Smartphone Photography
SPAQ BL
0.7106
0.8855
0.8799
NR
Perceptual Quality Assessment of Smartphone Photography
PaQ-2-PiQ
0.7079
0.8549
0.8705
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
GVSP-UGCVQA-NR (single_scale)
0.7037
0.8933
0.8742
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
GVSP-UGCVQA-NR (multi_scale)
0.6942
0.8851
0.8673
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
NIMA
0.6745
0.8784
0.8494
NR
NIMA: Neural Image Assessment
KonCept512
0.6608
0.8464
0.8360
NR
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
FAST-VQA
0.6498
0.8613
0.8308
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
FASTER-VQA
0.5645
0.8087
0.7508
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
VIDEVAL
0.5414
0.7717
0.7286
NR
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
Y-NIQE
0.4215
0.6713
0.5985
NR
Barriers towards no-reference metrics application to compressed video quality analysis: on the example of no-reference metric NIQE
0 of 21 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Video Quality | SOTA | HyperAI