HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التكيف غير المشرف بين المجالات
Unsupervised Domain Adaptation On Imagenet C
Unsupervised Domain Adaptation On Imagenet C
المقاييس
mean Corruption Error (mCE)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
mean Corruption Error (mCE)
Paper Title
ResNet50 (baseline), BatchNorm Adaptation, 8 samples
65.0
Improving robustness against common corruptions by covariate shift adaptation
ResNet50 (baseline), BatchNorm Adaptation, full adaptation
62.2
Improving robustness against common corruptions by covariate shift adaptation
ResNet50 + ENT
51.6
If your data distribution shifts, use self-learning
ResNet50 + RPL
50.5
If your data distribution shifts, use self-learning
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
48.4
Improving robustness against common corruptions by covariate shift adaptation
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
45.4
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101 32x8d + ENT
44.3
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + RPL
43.2
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + IG-3.5B + RPL
40.9
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + IG-3.5B + ENT
40.8
If your data distribution shifts, use self-learning
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
40.7
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
38.0
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101 32x8d + DeepAug + Augmix + ENT
35.5
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + DeepAug + Augmix + RPL
34.8
If your data distribution shifts, use self-learning
EfficientNet-L2+ENT
23.0
If your data distribution shifts, use self-learning
EfficientNet-L2+RPL
22.0
If your data distribution shifts, use self-learning
0 of 16 row(s) selected.
Previous
Next
Unsupervised Domain Adaptation On Imagenet C | SOTA | HyperAI