HyperAI

Time Series Forecasting On Etth1 336 1

المقاييس

MAE
MSE

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجMAEMSE
convtimenet-a-deep-hierarchical-fully0.4200.405
sparsetsf-modeling-long-term-time-series-0.434
generative-pretrained-hierarchical0.4230.430
revisiting-long-term-time-series-forecasting0.4230.42
time-series-is-a-special-sequence-forecasting0.4950.504
rose-register-assisted-general-time-series0.4220.406
taming-pre-trained-language-models-with-n0.4360.456
only-the-curve-shape-matters-training0.4190.424
autotimes-autoregressive-time-series0.4290.401
a-time-series-is-worth-64-words-long-term0.440.422
only-the-curve-shape-matters-training0.4270.459
taming-pre-trained-llms-for-generalised-time0.4360.456
units-building-a-unified-time-series-model0.4220.405
tempo-prompt-based-generative-pre-trained0.4250.408
patchmixer-a-patch-mixing-architecture-for0.4140.392
winnet-time-series-forecasting-with-a-window0.4260.419
leveraging-2d-information-for-long-term-time0.4400.436
pathformer-multi-scale-transformers-with0.4320.454
forecastgrapher-redefining-multivariate-time0.4480.472
only-the-curve-shape-matters-training0.4440.475
unitime-a-language-empowered-unified-model0.4070.398
film-frequency-improved-legendre-memory-model0.4450.442
an-analysis-of-linear-time-series-forecasting-0.448
d-pad-deep-shallow-multi-frequency-patterns0.4060.374
timemachine-a-time-series-is-worth-4-mambas0.4210.429
informer-beyond-efficient-transformer-for0.7530.884
fredformer-frequency-debiased-transformer-for0.4030.395
generative-pretrained-hierarchical0.4320.456
unified-training-of-universal-time-series0.4290.412
tsmixer-an-all-mlp-architecture-for-time0.431-
rethinking-channel-dependence-for0.4530.453
adaptive-multi-scale-decomposition-framework0.4270.418
xpatch-dual-stream-time-series-forecasting0.4150.391
rethinking-channel-dependence-for0.4350.433
basisformer-attention-based-time-series-10.4510.473
unlocking-the-potential-of-transformers-in0.4250.423
attention-as-an-rnn0.550.65
segrnn-segment-recurrent-neural-network-for0.4170.401
a-decoder-only-foundation-model-for-time0.436-
fits-modeling-time-series-with-10k-parameters-0.427
disentangled-interpretable-representation-for-0.424
softs-efficient-multivariate-time-series0.4520.480
unified-training-of-universal-time-series0.4500.456
is-mamba-effective-for-time-series0.4680.489
only-the-curve-shape-matters-training0.4320.468
timecma-towards-llm-empowered-time-series0.4050.403
long-term-series-forecasting-with-query0.70410.8321
atfnet-adaptive-time-frequency-ensembled0.5210.514
prformer-pyramidal-recurrent-transformer-for-0.427
tsmixer-lightweight-mlp-mixer-model-for0.4360.421
himtm-hierarchical-multi-scale-masked-time0.4300.422
boosting-mlps-with-a-coarsening-strategy-for0.4500.479
autoformer-decomposition-transformers-with0.4840.505
mixture-of-linear-experts-for-long-term-time-0.469
long-term-series-forecasting-with-query0.70390.8503
minusformer-improving-time-series-forecasting0.4460.465
itransformer-inverted-transformers-are0.4580.487
ltboost-boosted-hybrids-of-ensemble-linear0.4230.424
long-term-forecasting-with-tide-time-series0.4330.435
cats-enhancing-multivariate-time-series0.4370.423
time-evidence-fusion-network-multi-source0.4410.475
mixture-of-linear-experts-for-long-term-time-0.43
only-the-curve-shape-matters-training0.4180.433
only-the-curve-shape-matters-training0.4360.466
mamba-360-survey-of-state-space-models-as0.4430.473
random-projection-layers-for-multidimensional0.4980.521
vcformer-variable-correlation-transformer0.4490.473
bi-mamba4ts-bidirectional-mamba-for-time0.4450.455
unified-training-of-universal-time-series0.4740.514
deformtime-capturing-variable-dependencies0.2158-
are-transformers-effective-for-time-series0.4270.429
are-transformers-effective-for-time-series0.4430.439