HyperAI

Time Series Forecasting On Etth1 192 1

المقاييس

MAE
MSE

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجMAEMSE
time-evidence-fusion-network-multi-source0.4190.433
segrnn-segment-recurrent-neural-network-for0.4020.385
ltboost-boosted-hybrids-of-ensemble-linear0.4060.396
disentangled-interpretable-representation-for-0.407
long-term-forecasting-with-tide-time-series0.4220.412
xpatch-dual-stream-time-series-forecasting0.3950.376
learning-structured-components-towards0.3980.379
mixture-of-linear-experts-for-long-term-time-0.453
mixture-of-linear-experts-for-long-term-time-0.403
are-transformers-effective-for-time-series0.4160.405
a-time-series-is-worth-64-words-long-term0.4290.413
film-frequency-improved-legendre-memory-model0.4230.414
prformer-pyramidal-recurrent-transformer-for-0.397
patchmixer-a-patch-mixing-architecture-for0.3940.373
revisiting-long-term-time-series-forecasting0.4120.404
are-transformers-effective-for-time-series0.4150.408
tsmixer-lightweight-mlp-mixer-model-for0.4180.399