Text Classification On Yelp 5
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
BigBird | 72.16% | Big Bird: Transformers for Longer Sequences | |
BERT-ITPT-FiT | 70.58% | How to Fine-Tune BERT for Text Classification? | |
XLNet | 72.95% | XLNet: Generalized Autoregressive Pretraining for Language Understanding | |
HAHNN (CNN) | 73.28% | Hierarchical Attentional Hybrid Neural Networks for Document Classification | |
ULMFiT (Small data) | 67.6% | Sampling Bias in Deep Active Classification: An Empirical Study | |
LSTM-reg (single moedl) | 68.7% | Rethinking Complex Neural Network Architectures for Document Classification | |
BERT Finetune + UDA | 67.92% | Unsupervised Data Augmentation for Consistency Training |
0 of 7 row(s) selected.