HyperAI

Semi Supervised Semantic Segmentation On 7

المقاييس

Validation mIoU

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Validation mIoU
Paper TitleRepository
CutMix (DeepLab v3+ ImageNet pre-trained)59.52%Semi-supervised semantic segmentation needs strong, varied perturbations
DMT (DeepLab v2 MSCOCO pre-trained)63.04%DMT: Dynamic Mutual Training for Semi-Supervised Learning
ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pre-trained)63.60%Bootstrapping Semantic Segmentation with Regional Contrast
ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pre-trained)63.16%Bootstrapping Semantic Segmentation with Regional Contrast
CutMix (DeepLab v2 ImageNet pre-trained)53.79%Semi-supervised semantic segmentation needs strong, varied perturbations
ClassMix (DeepLab v2 MSCOCO pretrained)54.18%ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning
0 of 6 row(s) selected.