Semi Supervised Semantic Segmentation On 7
المقاييس
Validation mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Validation mIoU | Paper Title | Repository |
---|---|---|---|
CutMix (DeepLab v3+ ImageNet pre-trained) | 59.52% | Semi-supervised semantic segmentation needs strong, varied perturbations | |
DMT (DeepLab v2 MSCOCO pre-trained) | 63.04% | DMT: Dynamic Mutual Training for Semi-Supervised Learning | |
ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pre-trained) | 63.60% | Bootstrapping Semantic Segmentation with Regional Contrast | |
ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pre-trained) | 63.16% | Bootstrapping Semantic Segmentation with Regional Contrast | |
CutMix (DeepLab v2 ImageNet pre-trained) | 53.79% | Semi-supervised semantic segmentation needs strong, varied perturbations | |
ClassMix (DeepLab v2 MSCOCO pretrained) | 54.18% | ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning |
0 of 6 row(s) selected.