HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التمييز_الدلالي_شبه_المشرف
Semi Supervised Semantic Segmentation On 1
Semi Supervised Semantic Segmentation On 1
المقاييس
Validation mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Validation mIoU
Paper Title
UniMatch V2 (DINOv2-B)
84.5%
UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation
SemiVL (ViT-B/16)
80.3%
SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance
PrevMatch (ResNet-101)
80.1%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
S4MC
79.52%
Semi-Supervised Semantic Segmentation via Marginal Contextual Information
Dual Teacher (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
79.46
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
CorrMatch (Deeplabv3+ with ResNet-101)
79.4%
CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation
UniMatch (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.22%
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation
CPS (DeepLab v3+ with ImageNet-pretrained ResNet-101, single scale inference)
79.21%
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
AEL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
79.01%
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
PrevMatch (ResNet-50)
78.8%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL)
78.51%
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
CW-BASS (DeepLab v3+ with ResNet-50)
78.43%
CW-BASS: Confidence-Weighted Boundary-Aware Learning for Semi-Supervised Semantic Segmentation
n-CPS (ResNet-50)
78.41%
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
PCR (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
78.4%
Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
PS-MT (DeepLab v3+ with ImageNet-pretrained ResNet-50, single scale inference)
78.38%
Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
LaserMix (DeepLab v3+, ImageNet pre- trained ResNet50, single scale inference)
78.3%
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
SimpleBaseline(DeepLabv3+ with ImageNet pretrained Xception65, single scale inference)
77.8%
A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
CPCL (DeepLab v3+ with ResNet-50)
76.98%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
Error Localization Network (DeeplabV3 with ResNet-50)
73.52%
Semi-supervised Semantic Segmentation with Error Localization Network
SegSDE (MTL decoder with ResNet101, ImageNet pretrained, unlabeled image sequences)
69.38%
Three Ways to Improve Semantic Segmentation with Self-Supervised Depth Estimation
0 of 29 row(s) selected.
Previous
Next