HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Self Supervised Image Classification
Self Supervised Image Classification On
Self Supervised Image Classification On
المقاييس
Number of Params
Top 1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Number of Params
Top 1 Accuracy
Paper Title
Repository
DINOv2 distilled (ViT-S/14)
21M
81.1%
DINOv2: Learning Robust Visual Features without Supervision
SwAV (ResNet-50 x2)
94M
77.3%
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
MoCo (ResNet-50 4x)
375M
68.6%
Momentum Contrast for Unsupervised Visual Representation Learning
EsViT(Swin-S)
49M
80.8
Efficient Self-supervised Vision Transformers for Representation Learning
AMDIM (arxiv v1)
337M
60.2%
Learning Representations by Maximizing Mutual Information Across Views
SwAV (ResNet-50)
24M
75.3%
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
CaCo (ResNet-50)
24M
75.7%
CaCo: Both Positive and Negative Samples are Directly Learnable via Cooperative-adversarial Contrastive Learning
iGPT-XL (64x64, 3072 features)
6800M
68.7%
Generative Pretraining from Pixels
LocalAgg (ResNet-50)
24M
60.2%
Local Aggregation for Unsupervised Learning of Visual Embeddings
MAE-CT (ViT-H/16)
632M
82.2%
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
iGPT-L (48x48)
1400M
65.2%
Generative Pretraining from Pixels
EsViT (Swin-B)
87M
81.3
Efficient Self-supervised Vision Transformers for Representation Learning
PercMAE (ViT-B)
80M
78.1%
Improving Visual Representation Learning through Perceptual Understanding
MAE (ViT-B)
80M
68.0%
Masked Autoencoders Are Scalable Vision Learners
DINOv2 distilled (ViT-B/14)
85M
84.5%
DINOv2: Learning Robust Visual Features without Supervision
SimCLRv2 (ResNet-50 x2)
94M
75.6%
Big Self-Supervised Models are Strong Semi-Supervised Learners
MIM-Refiner (MAE-ViT-2B/14)
1890M
84.5%
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
MV-MR
-
74.5%
MV-MR: multi-views and multi-representations for self-supervised learning and knowledge distillation
MAE (ViT-L)
306M
75.8%
Masked Autoencoders Are Scalable Vision Learners
ReLICv2 (ResNet101)
44M
78.7%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
0 of 142 row(s) selected.
Previous
Next