HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
كشف الأشياء
Object Detection On Coco O
Object Detection On Coco O
المقاييس
Average mAP
Effective Robustness
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Average mAP
Effective Robustness
Paper Title
EVA
57.8
28.86
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
DETA (Swin-L)
48.5
20.15
NMS Strikes Back
GLIP-L (Swin-L)
48.0
24.89
Grounded Language-Image Pre-training
GRiT (ViT-H)
42.9
15.72
GRiT: A Generative Region-to-text Transformer for Object Understanding
DINO (Swin-L)
42.1
15.76
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
CBNetV2 (Swin-L)
39.0
12.36
CBNet: A Composite Backbone Network Architecture for Object Detection
ConvNeXt-XL (Cascade Mask R-CNN)
37.5
12.68
A ConvNet for the 2020s
InternImage-L (Cascade Mask R-CNN)
37.0
11.72
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
DyHead (Swin-L)
35.3
10.00
Dynamic Head: Unifying Object Detection Heads with Attentions
ViTDet (ViT-H)
34.3
-
Exploring Plain Vision Transformer Backbones for Object Detection
ViT-Adapter (BEiTv2-L)
34.25
7.79
Vision Transformer Adapter for Dense Predictions
FIBER-B (Swin-B)
33.7
11.43
Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
QueryInst (Swin-L)
33.2
8.26
Instances as Queries
YOLOv6-L6
32.5
6.73
YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
YOLOv7-E6E
32.0
6.42
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
MViTV2-H (Cascade Mask R-CNN)
30.9
5.62
MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
Det-AdvProp (EfficientNet-B5)
30.8
7.34
Robust and Accurate Object Detection via Adversarial Learning
YOLOv4-P6
30.4
5.89
YOLOv4: Optimal Speed and Accuracy of Object Detection
YOLOX-X
30.3
7.26
YOLOX: Exceeding YOLO Series in 2021
CenterNet2 (R2-101-DCN)
29.5
4.29
Probabilistic two-stage detection
0 of 45 row(s) selected.
Previous
Next
Object Detection On Coco O | SOTA | HyperAI