HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
كشف الأشياء
Object Detection On Coco
Object Detection On Coco
المقاييس
AP50
AP75
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
AP50
AP75
Paper Title
DyHead (ResNet-101)
64.5
50.7
Dynamic Head: Unifying Object Detection Heads with Attentions
YOLOv7-D6 (44 fps)
-
-
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
EfficientDet-D7 (1536)
71.6
56.9
EfficientDet: Scalable and Efficient Object Detection
GFLV2 (ResNeXt-101, 32x4d, DCN)
67.6
53.5
Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection
Faster R-CNN (ImageNet+300M)
58
40.1
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
GLIP (Swin-L, multi-scale)
79.5
67.7
Grounded Language-Image Pre-training
Group DETR v2
81.8
71.1
Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining
Mask R-CNN (ResNeXt-101-FPN)
62.3
43.4
Mask R-CNN
ISTR (ResNet50-FPN-3x, single-scale)
-
-
ISTR: End-to-End Instance Segmentation with Transformers
CPNDet (Hourglass-104, multi-scale)
67.3
53.7
Corner Proposal Network for Anchor-free, Two-stage Object Detection
M2Det (VGG-16, multi-scale)
64.6
49.3
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
YOLOv7-E6 (56 fps)
-
-
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
A2MIM (ViT-B)
-
-
Architecture-Agnostic Masked Image Modeling -- From ViT back to CNN
D-RFCN + SNIP (ResNet-101, multi-scale)
65.5
48.4
An Analysis of Scale Invariance in Object Detection - SNIP
LeYOLO-nano@480
-
-
LeYOLO, New Embedded Architecture for Object Detection
Centermask + ResNet101
61.6
46.9
CenterMask : Real-Time Anchor-Free Instance Segmentation
AC-FPN Cascade R-CNN (X-152-32x8d-FPN-IN5k, multi scale, only CEM)
70.4
57
Attention-guided Context Feature Pyramid Network for Object Detection
MnasFPN (MNASNet-B1)
-
-
MnasFPN: Learning Latency-aware Pyramid Architecture for Object Detection on Mobile Devices
Gaussian-FCOS
-
-
Localization Uncertainty Estimation for Anchor-Free Object Detection
Faster R-CNN
-
-
Speed/accuracy trade-offs for modern convolutional object detectors
0 of 262 row(s) selected.
Previous
Next
Object Detection On Coco | SOTA | HyperAI