HyperAIHyperAI

Node Classification On Pubmed 60 20 20 Random

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
ACM-Snowball-290.81 ± 0.52Revisiting Heterophily For Graph Neural Networks-
GCNII*89.98 ± 0.52Simple and Deep Graph Convolutional Networks-
GCN+JK90.09 ± 0.68Revisiting Heterophily For Graph Neural Networks-
ACMII-Snowball-391.31 ± 0.6Revisiting Heterophily For Graph Neural Networks-
ACM-SGC-187.75 ± 0.88Revisiting Heterophily For Graph Neural Networks-
MixHop87.04 ± 4.10MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing-
NHGCN91.56 ± 0.50Neighborhood Homophily-Guided Graph Convolutional Network
ACM-GCN+90.46 ± 0.69Revisiting Heterophily For Graph Neural Networks-
ACM-GCN++90.39 ± 0.33Revisiting Heterophily For Graph Neural Networks-
GPRGNN85.07 ± 0.09Adaptive Universal Generalized PageRank Graph Neural Network-
ACMII-GCN+90.96 ± 0.62Revisiting Heterophily For Graph Neural Networks-
ACM-GCNII*90.18 ± 0.51Revisiting Heterophily For Graph Neural Networks-
SGC-185.5 ± 0.76Simplifying Graph Convolutional Networks-
ACMII-GCN++90.63 ± 0.56Revisiting Heterophily For Graph Neural Networks-
APPNP85.02 ± 0.09Predict then Propagate: Graph Neural Networks meet Personalized PageRank-
ACMII-Snowball-290.56 ± 0.39Revisiting Heterophily For Graph Neural Networks-
H2GCN87.78 ± 0.28Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs-
Snowball-388.8 ± 0.82Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks-
ACM-SGC-288.79 ± 0.5Revisiting Heterophily For Graph Neural Networks-
MLP-286.43 ± 0.13Revisiting Heterophily For Graph Neural Networks-
0 of 37 row(s) selected.
Node Classification On Pubmed 60 20 20 Random | SOTA | HyperAI