HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Pubmed 48 32 20 Fixed
Node Classification On Pubmed 48 32 20 Fixed
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
GCNII
90.15 ± 0.43
Simple and Deep Graph Convolutional Networks
Geom-GCN
89.95 ± 0.47
Geom-GCN: Geometric Graph Convolutional Networks
ACMII-GCN
89.89 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
89.82 ± 0.41
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
89.78 ± 0.49
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.71 ± 0.48
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
89.65 ± 0.58
Revisiting Heterophily For Graph Neural Networks
GloGNN
89.62 ± 0.35
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
O(d)-NSD
89.49 ± 0.40
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
H2GCN
89.49 ± 0.38
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Diag-NSD
89.42 ± 0.43
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
89.33 ± 0.35
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GloGNN++
89.24 ± 0.39
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GESN
89.20 ± 0.34
Addressing Heterophily in Node Classification with Graph Echo State Networks
GGCN
89.15 ± 0.37
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
ACM-SGC-2
89.01 ± 0.6
Revisiting Heterophily For Graph Neural Networks
NLGCN
89.0 ± 0.5
Non-Local Graph Neural Networks
WRGAT
88.52 ± 0.92
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
ACM-SGC-1
88.49 ± 0.51
Revisiting Heterophily For Graph Neural Networks
NLGAT
88.2 ± 0.3
Non-Local Graph Neural Networks
0 of 26 row(s) selected.
Previous
Next