Node Classification On Ppi
المقاييس
F1
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | F1 |
---|---|
sgas-sequential-greedy-architecture-search | 99.46 |
a-proposal-of-multi-layer-perceptron-with | 99.71 |
representation-learning-on-graphs-with | 97.6 |
large-scale-learnable-graph-convolutional | 77.2 |
simple-and-deep-graph-convolutional-networks-1 | 99.56 |
deepgcns-making-gcns-go-as-deep-as-cnns | 99.43 |
the-split-matters-flat-minima-methods-for | 99.38 ± 0.01% |
cluster-gcn-an-efficient-algorithm-for | 92.9 |
bridging-the-gap-between-spectral-and-spatial | 99.09 ± 0.03 |
graph-representation-learning-beyond-node-and | - |
graph-star-net-for-generalized-multi-task-1 | 99.4 |
deepgcns-making-gcns-go-as-deep-as-cnns | 99.41 |
graphnas-graph-neural-architecture-search | 98.6 ± 0.1 |
deep-graph-contrastive-representation | 66.2 |
gaan-gated-attention-networks-for-learning-on | 98.7 |
graphsaint-graph-sampling-based-inductive | 99.50 |
graph-attention-networks | 97.3 |
sign-scalable-inception-graph-neural-networks | 96.50 |
the-split-matters-flat-minima-methods-for | 99.34 ± 0.02% |
cluster-gcn-an-efficient-algorithm-for | 99.36 |
vq-gnn-a-universal-framework-to-scale-up | 97.37 |
inductive-representation-learning-on-large | 61.2 |