HyperAI

Node Classification On Ppi

المقاييس

F1

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجF1
sgas-sequential-greedy-architecture-search99.46
a-proposal-of-multi-layer-perceptron-with99.71
representation-learning-on-graphs-with97.6
large-scale-learnable-graph-convolutional77.2
simple-and-deep-graph-convolutional-networks-199.56
deepgcns-making-gcns-go-as-deep-as-cnns99.43
the-split-matters-flat-minima-methods-for99.38 ± 0.01%
cluster-gcn-an-efficient-algorithm-for92.9
bridging-the-gap-between-spectral-and-spatial99.09 ± 0.03
graph-representation-learning-beyond-node-and-
graph-star-net-for-generalized-multi-task-199.4
deepgcns-making-gcns-go-as-deep-as-cnns99.41
graphnas-graph-neural-architecture-search98.6 ± 0.1
deep-graph-contrastive-representation66.2
gaan-gated-attention-networks-for-learning-on98.7
graphsaint-graph-sampling-based-inductive99.50
graph-attention-networks97.3
sign-scalable-inception-graph-neural-networks96.50
the-split-matters-flat-minima-methods-for99.34 ± 0.02%
cluster-gcn-an-efficient-algorithm-for99.36
vq-gnn-a-universal-framework-to-scale-up97.37
inductive-representation-learning-on-large61.2