HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Ppi
Node Classification On Ppi
المقاييس
F1
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
F1
Paper Title
Repository
SGAS
99.46
SGAS: Sequential Greedy Architecture Search
g2-MLP
99.71
A Proposal of Multi-Layer Perceptron with Graph Gating Unit for Graph Representation Learning and its Application to Surrogate Model for FEM
JK-LSTM
97.6
Representation Learning on Graphs with Jumping Knowledge Networks
LGCN
77.2
Large-Scale Learnable Graph Convolutional Networks
GCNII*
99.56
Simple and Deep Graph Convolutional Networks
DenseMRGCN-14
99.43
DeepGCNs: Making GCNs Go as Deep as CNNs
GCN + SAF
99.38 ± 0.01%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
ClusterGCN
92.9
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
DSGCN
99.09 ± 0.03
Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks
PairE
-
Graph Representation Learning Beyond Node and Homophily
GraphStar
99.4
Graph Star Net for Generalized Multi-Task Learning
ResMRGCN-28
99.41
DeepGCNs: Making GCNs Go as Deep as CNNs
GraphNAS
98.6 ± 0.1
GraphNAS: Graph Neural Architecture Search with Reinforcement Learning
GRACE
66.2
Deep Graph Contrastive Representation Learning
GaAN
98.7
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
GraphSAINT
99.50
GraphSAINT: Graph Sampling Based Inductive Learning Method
GAT
97.3
Graph Attention Networks
SIGN
96.50
SIGN: Scalable Inception Graph Neural Networks
GAT + PGN
99.34 ± 0.02%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
Cluster-GCN
99.36
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
0 of 22 row(s) selected.
Previous
Next