Node Classification On Penn94
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Accuracy |
---|---|
joint-adaptive-feature-smoothing-and-topology | 81.38 ± 0.16 |
new-benchmarks-for-learning-on-non | 80.69 ± 0.36 |
simple-and-deep-graph-convolutional-networks-1 | 82.92 ± 0.59 |
new-benchmarks-for-learning-on-non | 74.13 ± 0.46 |
mixture-of-experts-meets-decoupled-message | 85.11±0.39 |
diffusion-jump-gnns-homophiliation-via | 84.84±0.34 |
combining-label-propagation-and-simple-models-1 | 78.40 ± 3.12 |
new-benchmarks-for-learning-on-non | 81.63 ± 0.54 |
combining-label-propagation-and-simple-models-1 | 74.28 ± 1.19 |
new-benchmarks-for-learning-on-non | 63.21 ± 0.39 |
simplifying-graph-convolutional-networks | 76.09 ± 0.45 |
finding-global-homophily-in-graph-neural | 85.57 ± 0.35 |
simplifying-graph-convolutional-networks | 66.79 ± 0.27 |
new-benchmarks-for-learning-on-non | 80.79 ± 0.49 |
mixhop-higher-order-graph-convolution | 83.47 ± 0.71 |
generalizing-graph-neural-networks-beyond | 81.31 ± 0.60 |
new-benchmarks-for-learning-on-non | 73.61 ± 0.40 |
clarify-confused-nodes-through-separated | 84.74 ± 0.28 |
revisiting-heterophily-for-graph-neural | 85.05 ± 0.19 |
revisiting-heterophily-for-graph-neural | 84.95 ± 0.43 |
revisiting-heterophily-for-graph-neural | 85.95 ± 0.26 |
mixture-of-experts-meets-decoupled-message | 81.98±0.47 |
clarify-confused-nodes-through-separated | 81.77 ± 0.71 |
semi-supervised-classification-with-graph | 82.47 ± 0.27 |
predict-then-propagate-graph-neural-networks | 74.33 ± 0.38 |
feature-selection-key-to-enhance-node | 86.09±0.56 |
large-scale-learning-on-non-homophilous | 84.71 ± 0.52 |
breaking-the-limit-of-graph-neural-networks | 74.32 ± 0.53 |
revisiting-heterophily-for-graph-neural | 86.08 ± 0.43 |
graph-attention-networks | 81.53 ± 0.55 |
mixture-of-experts-meets-decoupled-message | 84.05±0.37 |
finding-global-homophily-in-graph-neural | 85.74±0.42 |