HyperAI

Node Classification On Penn94

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
joint-adaptive-feature-smoothing-and-topology81.38 ± 0.16
new-benchmarks-for-learning-on-non80.69 ± 0.36
simple-and-deep-graph-convolutional-networks-182.92 ± 0.59
new-benchmarks-for-learning-on-non74.13 ± 0.46
mixture-of-experts-meets-decoupled-message85.11±0.39
diffusion-jump-gnns-homophiliation-via84.84±0.34
combining-label-propagation-and-simple-models-178.40 ± 3.12
new-benchmarks-for-learning-on-non81.63 ± 0.54
combining-label-propagation-and-simple-models-174.28 ± 1.19
new-benchmarks-for-learning-on-non63.21 ± 0.39
simplifying-graph-convolutional-networks76.09 ± 0.45
finding-global-homophily-in-graph-neural85.57 ± 0.35
simplifying-graph-convolutional-networks66.79 ± 0.27
new-benchmarks-for-learning-on-non80.79 ± 0.49
mixhop-higher-order-graph-convolution83.47 ± 0.71
generalizing-graph-neural-networks-beyond81.31 ± 0.60
new-benchmarks-for-learning-on-non73.61 ± 0.40
clarify-confused-nodes-through-separated84.74 ± 0.28
revisiting-heterophily-for-graph-neural85.05 ± 0.19
revisiting-heterophily-for-graph-neural84.95 ± 0.43
revisiting-heterophily-for-graph-neural85.95 ± 0.26
mixture-of-experts-meets-decoupled-message81.98±0.47
clarify-confused-nodes-through-separated81.77 ± 0.71
semi-supervised-classification-with-graph82.47 ± 0.27
predict-then-propagate-graph-neural-networks74.33 ± 0.38
feature-selection-key-to-enhance-node86.09±0.56
large-scale-learning-on-non-homophilous84.71 ± 0.52
breaking-the-limit-of-graph-neural-networks74.32 ± 0.53
revisiting-heterophily-for-graph-neural86.08 ± 0.43
graph-attention-networks81.53 ± 0.55
mixture-of-experts-meets-decoupled-message84.05±0.37
finding-global-homophily-in-graph-neural85.74±0.42