HyperAI

Node Classification On Cora 48 32 20 Fixed

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذج1:1 Accuracy
neural-sheaf-diffusion-a-topological87.30 ± 1.15
non-local-graph-neural-networks88.5 ± 1.8
revisiting-heterophily-for-graph-neural88.01 ± 1.08
geom-gcn-geometric-graph-convolutional-185.35 ± 1.57
revisiting-heterophily-for-graph-neural88.19 ± 1.17
addressing-heterophily-in-node-classification86.04 ± 1.01
revisiting-heterophily-for-graph-neural86.9 ± 1.38
two-sides-of-the-same-coin-heterophily-and87.95 ± 1.05
joint-adaptive-feature-smoothing-and-topology87.95 ± 1.18
revisiting-heterophily-for-graph-neural87.69 ± 1.07
neural-sheaf-diffusion-a-topological86.90 ± 1.13
gread-graph-neural-reaction-diffusion-
revisiting-heterophily-for-graph-neural88.11 ± 0.96
non-local-graph-neural-networks88.1 ± 1.0
large-scale-learning-on-non-homophilous84.64 ± 1.13
revisiting-heterophily-for-graph-neural88.25 ± 0.96
generalizing-graph-neural-networks-beyond87.87 ± 1.20
finding-global-homophily-in-graph-neural88.33 ± 1.09
finding-global-homophily-in-graph-neural88.31 ± 1.13
non-local-graph-neural-networks76.9 ± 1.8
beyond-low-frequency-information-in-graph88.05 ± 1.57
simple-and-deep-graph-convolutional-networks-188.37 ± 1.25
mixhop-higher-order-graph-convolution87.61 ± 0.85
breaking-the-limit-of-graph-neural-networks88.20 ± 2.26
neural-sheaf-diffusion-a-topological87.14 ± 1.06
revisiting-heterophily-for-graph-neural88.05 ± 0.99