HyperAIHyperAI

Node Classification On Cora 48 32 20 Fixed

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
Gen-NSD87.30 ± 1.15Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs-
NLGAT 88.5 ± 1.8Non-Local Graph Neural Networks-
ACMII-GCN88.01 ± 1.08Revisiting Heterophily For Graph Neural Networks-
Geom-GCN85.35 ± 1.57Geom-GCN: Geometric Graph Convolutional Networks-
ACMII-GCN+88.19 ± 1.17Revisiting Heterophily For Graph Neural Networks-
GESN86.04 ± 1.01Addressing Heterophily in Node Classification with Graph Echo State Networks-
ACM-SGC-186.9 ± 1.38Revisiting Heterophily For Graph Neural Networks-
GGCN87.95 ± 1.05Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks-
GPRGCN87.95 ± 1.18Adaptive Universal Generalized PageRank Graph Neural Network-
ACM-SGC-287.69 ± 1.07Revisiting Heterophily For Graph Neural Networks-
O(d)-NSD86.90 ± 1.13Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs-
GREAD-BS-GREAD: Graph Neural Reaction-Diffusion Networks-
ACM-GCN++88.11 ± 0.96Revisiting Heterophily For Graph Neural Networks-
NLGCN 88.1 ± 1.0Non-Local Graph Neural Networks-
LINKX84.64 ± 1.13Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods-
ACMII-GCN++88.25 ± 0.96Revisiting Heterophily For Graph Neural Networks-
H2GCN87.87 ± 1.20Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs-
GloGNN++88.33 ± 1.09Finding Global Homophily in Graph Neural Networks When Meeting Heterophily-
GloGNN88.31 ± 1.13Finding Global Homophily in Graph Neural Networks When Meeting Heterophily-
NLMLP 76.9 ± 1.8Non-Local Graph Neural Networks-
0 of 26 row(s) selected.
Node Classification On Cora 48 32 20 Fixed | SOTA | HyperAI